

GCSE Computer Science Checklist
Unit 2 - Computational Thinking and Programming

(On-Screen Exam: 2 hour - 60 Marks - 30% of Qualification)

Topic Sub-Topic Explanation I can statement Studied R A G

P
ro

b
le

m
 S

o
lv

in
g

Problem Solving

Use a systematic approach to problem
solving including the use of
decomposition and abstraction.

I can break a complex problem into smaller
component parts.

I can remove unnecessary detail from a given
scenario.

I can simplify a given scenario.

Use abstraction effectively to model
selected aspects of the external world in
an algorithm or program.

I can outline the inputs required for a real
world situation.

I can outline the outputs required for a real
world situation.

I can outline the processes involved in a real
world situation.

I can explain the purpose of a given algorithm
or program.

Use abstraction effectively to
appropriately structure programs into
modular parts with clear, well-
documented interfaces.

I can produce modular programs which
contain self-contained subroutines.

I can produce interfaces which are clear and
unambiguous.

I can produce unambiguous documentation
for a program.

A
lg

o
ri

th
m

s
 a

n
d

P
ro

g
ra

m
m

in
g

 C
o

n
s

tr
u

c
ts

Algorithms
Use common methods of defining
algorithms, including pseudo-code and
flowcharts.

I can explain what an algorithm is.

I can explain the difference between pseudo-
code and a flowchart.

I can write a piece of pseudo-code using the
correct conventions.

I can produce a flowchart using the correct
conventions.

Programming
Constructs

Identify, explain and use sub routines in
algorithms and programs.

I can identify subroutines in algorithms and
explain their function.

I can explain what a subroutine is.

I can use subroutines to solve given
problems.

Identify, explain and use sequence,
selection and iteration in algorithms and
programs.

I can explain the difference between
sequence, selection and iteration in
algorithms.

I can identify sequence, selection and
iteration in algorithms.

I can explain the function of sequence,
selection and iteration in algorithms.

Identify, explain and use counts and
rogue values in algorithms and programs.

I can explain why iterations within a loop must
eventually be terminated.

I can explain the different methods which can
be used to terminate a loop.

I can explain how a count works.

I can describe what a rogue value is.

Identify and explain constructs in object
orientated programs.

I can identify a superclass, class, objects,
properties, methods and comments in an
object orientated program.

I can explain the purpose of classes, objects,
properties, methods and comments which
have been used in an object-orientated
program.

Variables
Identify, explain and use local and global
variables in algorithms and programs.

I can explain the difference between a local
and global variable.

I can identify local and global variables in
algorithms.

I can construct algorithms which contain local
and global variables.

I can construct a program which contains
local and global variables.

Identifiers

Explain why the use of self-documenting
identifiers and annotation are important in
programs.

I can explain why self-documenting identifiers
in a program are important.

I can explain why annotation is important in
programs.

Give examples of self documenting
identifiers and annotation.

I can produce a piece of code which contains
a range of self-documenting identifiers.

I can produce a piece of code which contains
annotation.

String Handling
Identify, explain and use routines for
string handling in algorithms and
programs.

I can identify different routines for string
handling.

I can explain the use of different string
handling techniques in algorithms and
programs.

I can use a range of string handling
techniques in algorithms and programs.

Mathematical
Operations

Identify, explain and apply computing-
related mathematical operations in
algorithms and programs.

I can identify different mathematical
operations which can be used in algorithms
and programs.

I can explain the use of different
mathematical operation in algorithms and
programs.

I can use a range of mathematical operations
in algorithms and programs.

Logical
Operations

Identify, use and explain the logical
operators AND, OR, NOT and XOR in
algorithms and programs.

I can identify a range of different logical
operations in algorithms and programs.

I can explain the use of different logical
operations in algorithms and programs.

I can use a range of logical operations in
algorithms and programs.

Sorting
Describe the characteristics of merge
sort and bubble sort algorithms.

I can explain the difference between a merge
and bubble sort algorithm.

I can describe how a merge sort algorithm
works.

I can perform a merge sort algorithm on a
given set of data.

I can describe how a bubble sort algorithm
works.

I can perform a bubble sort algorithm on a
given set of data.

Searching
Explain and use linear and binary search
algorithms.

I can explain the difference between a linear
and binary search algorithm.

I can perform a linear search on a given set of
data.

I can explain what the term "divide and
conquer" means.

I can perform a binary search on a given set
of data.

Testing and
Evaluating

Explain how an algorithm or program
works and evaluate its fitness for purpose
in meeting requirements.

I can explain how a given algorithm
processes data to produce an outcome.

I can compare different algorithms and make
judgements based on their efficiency.

Evaluate the efficiency of an algorithm or
program using logical reasoning and test
data

I can use logical reasoning to evaluate the
efficiency of an algorithm or program.

I can use test data to evaluate the efficiency
of an algorithm or program.

I can produce dry run algorithms using test
data.

I can explain the outputs of dry run
algorithms.

P
ro

g
ra

m
m

in
g

 L
a
n

g
u

a
g

e
s

Mark-up
Languages

Design, write, test and refine HTML
pages using tags and their corresponding
closures.

I can explain what a HTML tag is.

I can explain the purpose of commonly used
HTML tags.

I can identify different HTML tags that have
been used to produce a webpage.

I can use a range of HTML tags to mark up a
document to specific requirements.

Object-Oriented
Languages

Design, write, test and refine Java
programs within the Greenfoot
environment.

I can create new classes and extend existing
classes.

I can create new and edit existing objects.

I can create new and edit existing worlds.

I can write and invoke methods.

I can change existing methods.

I can create new and edit existing properties.

I can add and remove objects from worlds.

I can use actors.

I can move objects around a world.

I can keyboard input.

I can add and play sounds.

I can implement and use parameter passing.

I can access one object from another.

I can implement object collision detection.

I can implement random number generation.

I can use the concept of inheritance and
encapsulation.

Assembly
Languages

Design, write, test and refine simple
assembly programs.

I can design a simple assembly program.

I can write a simple assembly program which
contains a range of mnemonics.

I can test a simple assembly program.

I can refine a simple assembly program.

D
a

ta
 S

tr
u

c
tu

re
s
 a

n
d

 D
a
ta

 T
y

p
e

s

Implementing
Data Structures

Use one-dimensional and two
dimensional arrays, files and records.

I can use one dimensional arrays in
algorithms and programs to input, store,
process and output data.

I can use two dimensional arrays in
algorithms and programs to input, store,
process and output data.

I can use records in algorithms and programs
to input, store, process and output data.

Implementing
Data Types

Use a variety of data types, including
integer, boolean, real, character and
string.

I can use the integer data type in algorithms
and programs.

I can use the real data type in algorithms and
programs.

I can use the character data type in
algorithms and programs.

I can use the string data type in algorithms
and programs.

I can use the boolean data type in algorithms
and programs.

I can use different data types to hold data in
variables, arrays and records in both
algorithms and programs.

Variables and
Constants

Assign, identify and explain the use of
constants and variables in algorithms and
programs.

I can assign, identify and use constants in
programs and algorithms to store data that
does not change.

I can explain where the use of constants and
variables is appropriate.

I can assign, identify and use variables in
programs and algorithms to store data that
can change.

I can use variables and constants
appropriately.

Describe the scope and lifetime of
variables in algorithms and programs.

I can use local and global variables in
algorithms and programs.

I can explain the difference in lifetime
between local and global variables.

S
e

c
u

ri
ty

T
e
c

h
n

iq
u

e
s
 Security

Techniques
Use appropriate security techniques,
including validation and authentication.

I can use techniques that validate data in
algorithms.

I can use techniques that authenticate
information entered into an algorithm.

